86 research outputs found

    Nonconvulsive status epilepticus in neurocritical care: A critical reappraisal of outcome prediction scores

    Get PDF
    Objective: Nonconvulsive status epilepticus (NCSE) is a frequent condition in the neurocritical care unit (NCCU) patient population, with high morbidity and mortality. We aimed to assess the validity of available outcome prediction scores for prognostication in an NCCU patient population in relation to their admission reason (NCSE vs. non‐NCSE related). Methods: All 196 consecutive patients diagnosed with NCSE during the NCCU stay between January 2010 and December 2020 were included. Demographics, Simplified Acute Physiology Score II (SAPS II), NCSE characteristics, and in‐hospital and 3‐month outcome were extracted from the electronic charts. Status Epilepticus Severity Score (STESS), Epidemiology‐Based Mortality Score in Status Epilepticus (EMSE), and encephalitis, NCSE, diazepam resistance, imaging features, and tracheal intubation score (END‐IT) were evaluated as previously described. Univariable and multivariable analysis and comparison of sensitivity/specificity/positive and negative predictive values/accuracy were performed. Results: A total of 30.1% died during the hospital stay, and 63.5% of survivors did not achieve favorable outcome at 3 months after onset of NCSE. Patients admitted primarily due to NCSE had longer NCSE duration and were more likely to be intubated at diagnosis. The receiver operating characteristic (ROC) for SAPS II, EMSE, and STESS when predicting mortality was between .683 and .762. The ROC for SAPS II, EMSE, STESS, and END‐IT when predicting 3‐month outcome was between .649 and .710. The accuracy in predicting mortality/outcome was low, when considering both proposed cutoffs and optimized cutoffs (estimated using the Youden Index) as well as when adjusting for admission reason. Significance: The scores EMSE, STESS, and END‐IT perform poorly when predicting outcome of patients with NCSE in an NCCU environment. They should be interpreted cautiously and only in conjunction with other clinical data in this particular patient group

    Information flows from hippocampus to auditory cortex during replay of verbal working memory items

    Full text link
    The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and - additionally in four participants - recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance

    The modulatory effect of self-paced and cued motor execution on subthalamic beta-bursts in Parkinson's disease: Evidence from deep brain recordings in humans

    Full text link
    Deep brain stimulation (DBS) electrodes provide an unparalleled window to record and investigate neuronal activity right at the core of pathological brain circuits. In Parkinson's disease (PD), basal ganglia beta-oscillatory activity (13-35 Hz) seems to play an outstanding role. Conventional DBS, which globally suppresses beta-activity, does not meet the requirements of a targeted treatment approach given the intricate interplay of physiological and pathological effects of beta-frequencies. Here, we wanted to characterise the local field potential (LFP) in the subthalamic nucleus (STN) in terms of beta-burst prevalence, amplitude and length between movement and rest as well as during self-paced as compared to goal-directed motor control. Our electrophysiological recordings from externalised DBS-electrodes in nine patients with PD showed a marked decrease in beta-burst durations and prevalence during movement as compared to rest as well as shorter and less frequent beta-bursts during cued as compared to self-paced movements. These results underline the importance of beta-burst modulation in movement generation and are in line with the clinical observation that cued motor control is better preserved than self-paced movements. Furthermore, our findings motivate the use of adaptive DBS based on beta-bursts, which selectively trim longer beta-bursts, as it is more suitable and efficient over a range of motor behaviours than conventional DBS

    Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing

    Full text link
    Both the hippocampus and amygdala are involved in working memory (WM) processing. However, their specific role in WM is still an open question. Here, we simultaneously recorded intracranial EEG from the amygdala and hippocampus of epilepsy patients while performing a WM task, and compared their representation patterns during the encoding and maintenance periods. By combining multivariate representational analysis and connectivity analyses with machine learning methods, our results revealed a functional specialization of the amygdala-hippocampal circuit: The mnemonic representations in the amygdala were highly distinct and decreased from encoding to maintenance. The hippocampal representations, however, were more similar across different items but remained stable in the absence of the stimulus. WM encoding and maintenance were associated with bidirectional information flow between the amygdala and the hippocampus in low-frequency bands (1-40 Hz). Furthermore, the decoding accuracy on WM load was higher by using representational features in the amygdala during encoding and in the hippocampus during maintenance, and by using information flow from the amygdala during encoding and that from the hippocampus during maintenance, respectively. Taken together, our study reveals that WM processing is associated with functional specialization and interaction within the amygdala-hippocampus circuit

    Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements

    Full text link
    Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback

    The Impact of Subthalamic Deep Brain Stimulation on Sleep–Wake Behavior: A Prospective Electrophysiological Study in 50 Parkinson Patients

    Full text link
    Study objectives: This prospective observational study was designed to systematically examine the effect of subthalamic deep brain stimulation (DBS) on subjective and objective sleep-wake parameters in Parkinson patients. Methods: In 50 consecutive Parkinson patients undergoing subthalamic DBS, we assessed motor symptoms, medication, the position of DBS electrodes within the subthalamic nucleus (STN), subjective sleep-wake parameters, 2-week actigraphy, video-polysomnography studies, and sleep electroencepahalogram frequency and dynamics analyses before and 6 months after surgery. Results: Subthalamic DBS improved not only motor symptoms and reduced daily intake of dopaminergic agents but also enhanced subjective sleep quality and reduced sleepiness (Epworth Sleepiness Scale: -2.1 ± 3.8, p < .001). Actigraphy recordings revealed longer bedtimes (+1:06 ± 0:51 hours, p < .001) without shifting of circadian timing. Upon polysomnography, we observed an increase in sleep efficiency (+5.2 ± 17.6%, p = .005) and deep sleep (+11.2 ± 32.2 min, p = .017) and increased accumulation of slow-wave activity over the night (+41.0 ± 80.0%, p = .005). Rapid eye movement sleep features were refractory to subthalamic DBS, and the dynamics of sleep as assessed by state space analyses did not normalize. Increased sleep efficiency was associated with active electrode contact localization more distant from the ventral margin of the left subthalamic nucleus. Conclusion: Subthalamic DBS deepens and consolidates nocturnal sleep and improves daytime wakefulness in Parkinson patients, but several outcomes suggest that it does not normalize sleep. It remains elusive whether modulated activity in the STN directly contributes to changes in sleep-wake behavior, but dorsal positioning of electrodes within the STN is linked to improved sleep-wake outcomes

    Reduced Regional NREM Sleep Slow-Wave Activity Is Associated With Cognitive Impairment in Parkinson Disease

    Full text link
    Growing evidence implicates a distinct role of disturbed slow-wave sleep in neurodegenerative diseases. Reduced non-rapid eye movement (NREM) sleep slow-wave activity (SWA), a marker of slow-wave sleep intensity, has been linked with age-related cognitive impairment and Alzheimer disease pathology. However, it remains debated if SWA is associated with cognition in Parkinson disease (PD). Here, we investigated the relationship of regional SWA with cognitive performance in PD. In the present study, 140 non-demented PD patients underwent polysomnography and were administered the MontrĂ©al Cognitive Assessment (MoCA) to screen for cognitive impairment. We performed spectral analysis of frontal, central, and occipital sleep electroencephalography (EEG) derivations to measure SWA, and spectral power in other frequency bands, which we compared to cognition using linear mixed models. We found that worse MoCA performance was associated with reduced 1–4 Hz SWA in a region-dependent manner (F2, 687 =11.67, p < 0.001). This effect was driven by reduced regional SWA in the lower delta frequencies, with a strong association of worse MoCA performance with reduced 1–2 Hz SWA (F2, 687 =18.0, p < 0.001). The association of MoCA with 1–2 Hz SWA (and 1–4 Hz SWA) followed an antero-posterior gradient, with strongest, weaker, and absent associations over frontal (rho = 0.33, p < 0.001), central (rho = 0.28, p < 0.001), and occipital derivations, respectively. Our study shows that cognitive impairment in PD is associated with reduced NREM sleep SWA, predominantly in lower delta frequencies (1–2 Hz) and over frontal regions. This finding suggests a potential role of reduced frontal slow-wave sleep intensity in cognitive impairment in PD

    Intrinsic neural timescales in the temporal lobe support an auditory processing hierarchy

    Get PDF
    During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial electroencephalography in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT:Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial electroencephalography (iEEG), we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of iEEG responses to sounds: cortical electrodes with fast timescales also show fast and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses

    Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial

    Get PDF
    In a controlled, prospective, electrophysiological study, Imbach et al. demonstrate increased sleep need and excessive daytime sleepiness 6 months after traumatic brain injury. Sleep is more consolidated after brain trauma, and an increase in sleep need is associated with intracranial haemorrhage. Trauma patients underestimate their increased sleep need and sleepines

    Postoperative progression of brain metastasis is associated with seizures

    Full text link
    Seizures in patients with brain metastases have an impact on morbidity and quality of life. The influence of tumor growth on the risk of seizures in these patients is not well defined. In this cohort study, we evaluated adult patients from the University Hospital of Zurich following resection of brain metastases from solid tumors, with or without preoperative seizures, at 3, 6, 9, and 12 months postoperatively. Brain magnetic resonance imaging was assessed for tumor progression using the Response Assessment in Neuro-Oncology criteria. The quarterly risk of unprovoked seizures was modeled with mixed effects logistic regression. We analyzed 444 time frames in 220 patients. Progression of brain metastases was independently associated with seizures during the respective quarterly follow-up period (odds ratio = 3.9, 95% confidence interval = 1.3-11.3, p = .014). Complete resection of brain metastases was associated with a lower risk of seizures (odds ratio = .2, 95% confidence interval = .04-.7, p = .015). Postoperative progression of brain metastases quadrupled the risk of seizures; therefore, vigorous follow-up may be useful to identify tumor progression and gauge the risk of seizures. The identification of patients at high seizure risk may have implications for treatment decisions and influence aspects of daily life. Breakthrough seizures may indicate brain metastases progression
    • 

    corecore